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AbstrAct

Lists of vestigial biological structures in biology textbooks are so short that some 
young-Earth creationist authors claim that scientists have lost confidence in the 
existence of vestigial structures and can no longer identify any verifiable ones. 
We tested these hypotheses with a method that is easily adapted to biology classes. 
We used online search engines to find examples of 21st-century articles in pri-
mary scientific literature in which biological structures are identified as vestigial. 
Our results falsify these creationist hypotheses and show that scientists currently 
identify many structures as vestigial in animals, plants, and single-celled organ-
isms. Examples include not only organs but also cells, organelles, and parts of 
molecules. Having students repeat this study will give them experience with 
hypothesis testing, introduce them to primary scientific articles, and further their 
education on vestigial structures.

Key Words: Vestigial structures; vestigial organs; evolution; creationism; primary 
scientific literature.

IntroductionJ JJ

Many organisms possess biological structures that are recognizable 
as degenerate versions of their homologs in related organisms and 
that do not perform the functions that those 
homologs perform. For example, degenerate 
eyes in blind cave fishes and cave salamanders 
are useless for vision (Eigenmann, 1900), and 
degenerate limbs in numerous lizard species are 
useless for locomotion (Moch & Senter, 2011). 
Such degenerate structures are called “vestigial 
structures” because they are vestiges (remnants) 
of ancestral structures. Biologists recognize 
vestigial structures as evidence for biological 
evolution (Starr & Taggart, 2004; Reece et al., 
2011). For example, blind cave fishes and sala-
manders arguably have eyes only because they  inherited them from 
sighted ancestors.

Until recently the human and ape appendix has been consid-
ered a vestigial organ, a remnant of a much larger ancestral cecum. 
A cecum is a side branch of the large intestine that houses bacteria 

that break down cellulose, enhancing the digestion of plant matter 
in herbivorous mammals (Kardong, 2011). However, an anatomical 
study of primates showed that the appendix of humans and apes is 
not a remnant of a cecum but is instead an evolutionarily new struc-
ture with no homolog in lower primates (Scott, 1980). It appears to 
function as a protective reservoir for beneficial bacteria that inhabit 
the colon, a microbial “Noah’s ark” from which beneficial bacteria 
can repopulate the colon if a disease decimates them (Bollinger 
et al., 2007).

The recognition of the appendix as vestigial ceased not because 
it has a function but because it is a newly evolved structure instead 
of a vestige of an ancestral structure. A structure does not have to be 
useless or functionless to be a vestige. Even so, scientists generally 
hesitate to use the term “vestigial” for a structure unless it has lost its 
most salient previous function. For example, the degenerate pelves of 
whales currently function as anchors for reproductive structures but 
are considered vestigial because they have lost their previous func-
tion as anchors for hindlimbs that are used in locomotion (Simões-
Lopes & Gutstein, 2004). Likewise, the degenerate ink glands of 
certain marine snails store algal pigments but are considered ves-

tigial because they have lost their previous 
function as organs of ink production (Prince 
& Johnson, 2006). 

Anti-evolution authors in the young-
Earth creationist (YEC) camp have long 
insisted that all structures previously identi-
fied as vestigial are actually misidentified as 
such (e.g., Morris, 1974; Koop & Schaeffer, 
1987; Bergman & Howe, 1990; Bergman, 
2000; Menton, 2010). According to the YEC 
argument, no truly vestigial biological struc-
tures exist. Rather, in each case, the structure 

is functional but its function was unknown when it was labeled as 
vestigial. Such authors fail to understand that a structure can have 
a function and yet be a vestige. Nevertheless, some of these YEC 
authors have noticed something that is worth noticing: Lists of ves-
tigial structures in biology textbooks have dwindled through the 
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decades. These authors use this as evidence that scientists have lost 
confidence in the existence of vestigial structures or that scientists 
cannot find more examples of valid vestigial structures (Koop & 
Schaeffer, 1987; Bergman & Howe, 1990; Bergman, 2000). As one 
YEC author puts it, “vestigial organs…have now been thoroughly 
discredited” (Bergman, 2010, p. 63).

Indeed, lists of vestigial biological structures in current biology 
textbooks are usually quite short, with only one to three examples 
(e.g., Starr & Taggart, 2004; Reece et al., 2011). This is the case even 
in textbooks for evolution classes (e.g., Ridley, 2004; Kardong, 2008), 
one of which does not mention vestigial structures at all (Volpe & 
Rosenbaum, 2000). It is therefore worth testing the YEC hypoth-
eses that biologists have lost confidence in the existence of vestigial 
structures and that more examples than those in short textbook lists 
cannot be found. Both hypotheses make the same prediction: that 
a review of recent primary scientific literature will find only a small 
number of examples (or none) of biological structures that are iden-
tified as vestigial. This is because scientists primarily communicate 
via primary literature (technical journals, etc.), not textbooks. Here, 
we report a test of these YEC hypotheses.

The test described below is one that can be employed as an 
assignment in a biology class to serve three purposes that are impor-
tant for science students. First, it involves students in hypothesis 
testing, which gives them experience with scientific method. Second, 
it introduces students to primary scientific literature, so that they can 
see firsthand the ultimate sources of the information that ends up in 
textbooks and in secondhand reports in popular science magazines. 
Third, it expands their education on vestigial structures beyond the 
meager information found in textbooks. All three goals were in fact 
attained when this test was performed in a class taught by one of us 
(Senter), in which the rest of us were graduate students.

MethodsJ JJ

We used the search terms “vestigial” and “vestige” to search online 
databases of primary scientific articles such as JSTOR (http://www.
jstor.org) and Science Direct (http://www.sciencedirect.com) for 
examples of articles in which biological structures are explicitly iden-
tified as vestigial. We counted such identifications only if the fol-
lowing five criteria were met: (1) The authors’ wording indicates that 
they themselves consider the structure vestigial and are not merely 
citing previous opinions on vestigiality. (2) The authors use the word 
“vestigial” or “vestige,” not just a synonym (e.g., “rudimentary” or 
“reduced”). (3) The authors are not describing a rare developmental 
anomaly. (4) The organism with the vestigial structure is extant. 
(5) The vestigial structures are not just mentioned in passing but are 
important to the main focus of the article. To avoid the appearance 
of “stacking the deck,” we did not use any articles for which any of 
us was an author.

We used only articles published in the 21st century, to ensure 
that the identification of a structure as vestigial is recent enough to 
be considered current. We did not use articles from the year 2000, 
because that is actually the last year of the 20th century. 

ResultsJ JJ

In 21st-century articles from primary scientific journals, we found 
enough examples of biological structures that scientists identify as 

vestigial to place 64 entries in Table 1. Several of these entries include 
multiple species or supraspecific taxa. This falsifies the YEC hypoth-
eses that scientists have lost confidence in the existence of vestigial 
biological structures and that scientists cannot find more than a few 
examples of vestigial biological structures in nature.

DiscussionJ JJ

To make our results more useful to others, we have included informa-
tion on function in Table 1. A few vestigial structures are explicitly 
recognized as entirely useless in primary scientific literature (Table 1), 
but most are not.

It is probable that we have missed numerous examples of bio-
logical structures that scientists currently consider vestigial. This is 
because the online search engines cannot find every single scien-
tific article published in the 21st century, because we examined no 
 primary scientific literature from sources other than journal articles, 
and because we used only English-language articles. Table 1, there-
fore, should not be considered a complete list, and the absence of 
a structure therein does not necessarily mean that scientists do not 
currently consider it vestigial. Furthermore, we did not include the 
numerous examples of vestigial structures recognized in fossil taxa 
(e.g., Senter, 2010). These facts, in addition to the fact that Table 1 
contains a plethora of examples despite its incompleteness, show 
that biological structures that scientists currently consider vestigial 
are common, not rare or nonexistent.

As Table 1 shows, some body parts are particularly prone to 
 vestigiality in certain taxa or in organisms in certain ecological niches. 
For example, vestigial reproductive structures are common in plants. 
Vestigial limbs are common in lizards. Vestigial eyes are common 
in burrowing vertebrates. Vestigial mitochondria are common in 
microbes that inhabit anoxic environments.

Our results show that scientists recognize vestigiality at numerous 
levels of biological organization in addition to the organ level. In 
some cases, a major bodily region is vestigial (e.g., the abdomen of a 
barnacle; Blin et al., 2003). Structures smaller than organs can also be 
vestigial. Vestigial organelles have been identified in unicellular organ-
isms (e.g., vestigial mitochondria in several species [Regoes et al., 
2005] and vestigial chloroplasts in others [Sekiguchi et al., 2002]).
Even parts of molecules can be considered vestigial. Researchers have 
recently identified vestigial genes in whales (McGowen et al., 2008) 
and a vestigial region in antibody molecules of wobbegong sharks 
(Streltsov et al., 2004).

It is rare for biology textbooks to mention vestigial structures 
other than organs and to list more than three examples. We there-
fore hope that our compilation in Table 1 will be useful to educators 
who wish to supplement meager textbook information with further 
examples. We also recommend that longer lists of vestigial structures 
be added to biology textbooks, to counter the YEC hypotheses that 
are falsified here.

Our study is easily adapted to biology classes as an assignment. 
If students are assigned to find a certain number of publications on 
vestigial structures in primary scientific literature, they need only 
be taught how to enter the term “vestigial” or “vestige” in an online 
search engine and to recognize primary scientific articles (e.g., by 
the presence of an abstract). The experience and knowledge gained 
during such an exercise would be a valuable addition to a student’s 
biological education.
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the american Biology teacher Vestigial Biological structures 101

Table 1. Examples of biological structures that scientists have identified as vestigial in primary scientific 
journal articles published in the 21st century. N = no function listed by author(s). U = useless structure 
according to author(s).

Taxon Structure
Structure’s Function 
in Unreduced State

Structure’s Function 
in Vestigial State Reference(s)

Unicellular Organisms

Amoebozoa

Entamoeba histolytica mitochondria ATP synthesis N Regoes et al., 2005

Apicomplexa

Cryptosporidium parvum mitochondria ATP synthesis N Regoes et al., 2005

Plasmodium falciparum chloroplast photosynthesis N Sekiguchi et al., 2002

Toxoplasma gondii chloroplast photosynthesis N Sekiguchi et al., 2002

Diplomonadida

Giardia lamblia mitochondria ATP synthesis Fe-S cluster synthesis Regoes et al., 2005

Euglenozoa

Astasia longa chloroplast photosynthesis N Sekiguchi et al., 2002

Fungi

Trachipleistophora humanis mitochondria ATP synthesis N Regoes et al., 2005

Heterokontophyta

Anthophysa vegetans chloroplast photosynthesis N Sekiguchi et al., 2002

Blastocystis humanis mitochondria ATP synthesis N Regoes et al., 2005

Ciliophrys infusionum chloroplast photosynthesis N Sekiguchi et al., 2002

Pteridomonas danica chloroplast photosynthesis N Sekiguchi et al., 2002

Paraphysomonas chloroplast photosynthesis N Sekiguchi et al., 2002

Spumella chloroplast photosynthesis N Sekiguchi et al., 2002

Multicellular Organisms

Plantae

some Arecoideae  
(a subfamily of palms)

male flowers pollen production N Ortega-Chávez & 
Stauffer, 2011

Gethyum and Gilliesia  
(South American allioids)

stamens pollen production N Rudall et al., 2002

Schiedea (Hawaiian 
schiedeas)

stamens pollen production N Golonka et al., 2005

Consolea spinosissima 
(a cactus)

androecium  
[in female plants]

pollen production N Strittmatter et al., 2002

Consolea spinosissima 
(a cactus)

gynoecium [in male 
plants]

sperm reception; ovule 
and fruit production

N Strittmatter et al., 2002

Fragaria virginiana 
(strawberry)

stamens pollen production N Ashman, 2003

Nemophila menziesii 
(Baby Blue-eyes)

anthers pollen production N Gomez & Shaw, 2006

Penstemon centranthifolius 
(Scarlet Bugler) and 
P. rostriflorus (Beakflower 
Penstemon)

stamen pollen production U Walker-Larsen & 
Harder, 2001
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Table 1. continued

Taxon Structure
Structure’s Function 
in Unreduced State

Structure’s Function 
in Vestigial State Reference(s)

Penstemon ellipticus 
(Rocky Ledge Penstemon)

stamen pollen production increases duration 
of pollinators’ visits 
by hindering nectar 
access

Walker-Larsen & 
Harder, 2001

Penstemon palmeri  
(Palmer’s Penstemon)

stamen pollen production acts as a lever that 
increases stigma 
contact with pollinator

Walker-Larsen & 
Harder, 2001

Epifagus americana 
(Beechdrops)

chloroplasts photosynthesis N Sekiguchi et al., 2002

Bryozoa

Calloporidae (a bryozoan 
family)

ooecium protects brood 
chamber

N Ostrovsky et al., 2006

Mollusca

Dolabifera dolabifera  
(a sea hare)

ink gland defensive ink 
production

algal pigment storage Prince & Johnson, 
2006

Octopus vulgaris  
(common octopus)

shell external protection N Napoleão et al., 2005

Teuthida (squid) phragmocone buoyancy muscle and fin 
attachment

Arkhipkin et al., 2012

Arthropoda

Cirripedia (barnacles) abdomen multiple functions N Blin et al., 2003

Carabus solieri (a ground 
beetle)

hind wings flight U Garnier et al., 2006

Formidicae (ants) [workers] spermathecae sperm storage N Bowsher et al., 2007; 
Gotoh et al., 2013

Formicidae [workers of 
most species]

wing imaginal discs wing production N Bowsher et al., 2007

Diacamma (a genus of 
wingless ants) [workers]

wings flight social display of 
reproductive status

Miura, 2005

Apis cerana (eastern 
honeybee) and A. mellifera 
(European honeybee) 
[workers]

spermathecae sperm storage N Gotoh et al., 2012

Lepidoptera larvae 
(caterpillars)

crop food storage defensive regurgitation Grant, 2006

Chondrichthyes

Orectolobus maculatus 
(wobbegong shark)

complementarity-
determining region 
of IgNAR antibody

adhesion to antigen N Streltsov et al., 2004

Actinopterygii

Actinopterygii vertebral arches of 
posterior tail

muscle attachment N Bensimon-Brito et al., 
2012

Acipenseriformes 
(paddlefishes and 
sturgeons)

pulmonary artery blood transport to gas 
bladder

blood transport 
elsewhere

Longo et al., 2013
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Table 1. continued

Taxon Structure
Structure’s Function 
in Unreduced State

Structure’s Function 
in Vestigial State Reference(s)

Astyanax mexicanus  
(blind cavefish)

eyes vision regulation of circadian 
rhythms

Espinasa & Jeffery, 
2006; Franz-Odendaal 
& Hall, 2006; Yoshizawa 
& Jeffery, 2008

Echidna nebulosa (snowflake 
moray) and Muraena retifera 
(reticulate moray)

pectoral girdle support for pectoral fin N Mehta & Wainwright, 
2007

Actinistia

Latimeria (coelacanths) lung gas exchange N Longo et al., 2013

Latimeria pulmonary vein blood transport from 
lung to heart

N Longo et al., 2013

Amphibia

Plethodon cinereus (red-
backed salamander) and 
Eurycea (brook salamanders)

fourth epibranchial gill support N Kerney et al., 2012

Sirenidae (legless 
salamanders)

pectoral girdle forelimb support N Bejder & Hall, 2002

Gegenophis ramaswamii  
(a caecilian)

fourth epibranchial gill support N Müller et al., 2005

Squamata

Pygopodidae (flap-footed 
lizards)

hindlimbs locomotion N Brandley et al., 2008

Ophisaurus apodus 
(European legless lizard)

hindlimbs locomotion N Bejder & Hall, 2002; 
Brandley et al., 2008

Bipes (a genus of worm 
lizarda)

pelvic girdle hindlimb support N Kearney, 2002

Bipes hindlimbs locomotion N Kearney, 2002

Rhineura floridana (Florida 
worm lizard)

eyes vision N Kearney et al., 2005

Rhineura floridana jugal bone forms lower border of 
eye socket

N Kearney et al., 2005

Blanus (a genus of worm 
lizards)

hindlimbs locomotion N Kearney, 2002

Feylinia (a skink genus) sternum forelimb muscle 
attachment

N Kearney, 2002

Jarujinia bipedalis (a skink 
species)

forelimbs locomotion N Chan-ard et al., 2001

some Serpentes (snakes) hindlimbs locomotion N Kearney, 2002; 
Brandley et al., 2008

Aves

Apterygidae (kiwis), 
Casuariidae (cassowaries), 
and Dromaiidae (emus)

wings flight U Maxwell & Larsson, 
2007
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Table 1. continued

Taxon Structure
Structure’s Function 
in Unreduced State

Structure’s Function 
in Vestigial State Reference(s)

Mammalia

Cetacea (whales) pelvic girdle braces hindlimb 
against vertebral 
column

support for 
reproductive organs

Bejder & Hall, 2002; 
Simões-Lopes & 
Gutstein, 2004

Mysticeti (baleen whales) hindlimbs locomotion N Bejder & Hall, 2002

Odontoceti (toothed 
whales)

olfactory receptor 
subgenomes

genes for olfactory 
receptors

N McGowen et al., 2008

Monodon monoceros 
(narwhal)

molariform teeth food processing U Nweeia et al., 2012

Felidae (cat family) clavicle braces scapula against 
sternum

N Hartstone-Rose et al., 
2012

Mus musculus (house 
mouse)

incisor tooth bud production of incisor N Peterková et al., 2002, 
2006

Spalax ehrengergi (Middle 
East blind mole rat)

retina image formation regulation of circadian 
rhythms

Zubidat et al., 2010

Primates (primates) Harderian gland eye socket lubrication N Rehorek & Smith, 2006

Perodicticus potto (potto) index finger prehension N Tague, 2002

Ateles geoffroyi (Geoffroy’s 
spider monkey) and 
Colobus guereza (mantled 
guereza)

thumb prehension N Tague, 2002

Catarrhini (humans, apes, 
and Old World monkeys)

vomeronasal organ pheromone reception N Liman & Innan, 2003; 
Zhang & Webb, 2003

Homo sapiens (humans) sinus hair muscle whisker movement N Tamatsu et al., 2007
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